Confinement-Driven Phase Separation of Quantum Liquid Mixtures
نویسندگان
چکیده
منابع مشابه
Phase Separation of Viscous Ternary Liquid Mixtures
In this work we study the demixing of ternary liquid mixtures. Our theoretical model follows the standard diffuse interface model, where convection and diffusion are coupled via a body force, expressing the tendency of the mixture to minimize its free energy. This driving force induces a material flux which, in most cases, is much larger than that due to pure molecular diffusion. Here we model ...
متن کاملPhase-separation transition in liquid mixtures near curved charged objects.
We study the thermodynamic behavior of nonpolar liquid mixtures in the vicinity of curved charged objects, such as electrodes or charged colloids. There is a critical value of charge (or potential), above which a phase-separation transition occurs, and the interface between high- and low-dielectric constant components becomes sharp. Analytical and numerical composition profiles are given, and t...
متن کاملTailoring of high-order multiple emulsions by the liquid-liquid phase separation of ternary mixtures.
Multiple emulsions with an "onion" topology are useful vehicles for drug delivery, biochemical assays, and templating materials. They can be assembled by ternary liquid phase separation by microfluidics, but the control over their design is limited because the mechanism for their creation is unknown. Herein we show that phase separation occurs through self-similar cycles of mass transfer, spino...
متن کاملCrystal templating through liquid-liquid phase separation.
Controlled induction of crystal nucleation is a highly desirable but elusive goal. Attempts to speed up crystallization, such as high super saturation or working near a liquid-liquid critical point, always led to irregular and uncontrollable crystal growth. Here, we show that under highly nonequilibrium conditions of spinodal decomposition, water crystals grow as thin wires in a template-less f...
متن کاملLiquid-liquid phase separation in biology.
Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2012
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.109.075301